Introduction to API

Understanding Femap API terminology - with
a short introduction into the how’s and why’s

What’s in this section:

* What is an API?

* What is object orientated programming?

* API organization

* How to define the FEMAP API objects and use them
* Anatomy of a simple API

What is an API?

* The FEMAP API is an OLE/COM based programming interface and is
object oriented programming. If you have never programmed in an
object oriented code, it can seem quite different and foreign.

* API means “Application Programming Interface”. It is important to
understand that the API script you write is not part of FEMAP,but
is a stand alone program that is /interacting with FEMAP.

* There are a number of codes that can call FEMAP through the API:
Visual Basic,VBA (Excel,Word,Access, ...), C, or C++.

* The most commonly used codes used are Visual Basic,VBA, and
WinWrap.

* WinWrap is a flavor of Visual Basic that is included with FEMAP. In the
FEMAP interface,WinWrap is uncompilable, for this reason many
choose not to use it, but it is a very convenient way to program if your
specific application does not need to be compiled.

* This tutorial will focus exclusively on using WinWrap via the FEMAP
API window.

2 Femap with NX Nastran - [Model1] - [PredEngr] =<

File Tools Geometry Conmect Model Mesh Modify Lisk Delste Groop Wiew Window Help Predictive Enginesring 55 x' -ﬁ it

:E T Mode... Approach ©On Surface... Element Face... % -3 X
L o [| o B 00 | mm @ E 2 @ poine. curve. [YPLE08, S) Extend., G]ﬁi@|§ = Q-HE@.H
i API Programming 1 x i Model Info o x PredEngr | b x
SolE-HEHE »EE - adS N AN
1 "Pradictive Engineeting 2006 - #- i, Coordinate Syste

'Predictive Engineeting Assurnes Mo Responsibility For Results Cbtained From &PT — Geometry
'APT waritten by Jared Ellefson . :
“Jared Ellefson@PradictiveEngineating corm ® ‘ Connections
'Phone # S41-760-2355 - ™Model
‘Wtten For FEMARP 92 i,
'Thiz AP will reorient zelected entities from one arbitrary plane to anather % Analyses

----- #E] Results
Sub Main #-E] Yiews
'First we are qoing to connect & active FEMAP session
Ciim Fernap &5 fernap m =

/

* This is the optional
FEMAP API editing
window.

* Although the window
appears to be part of
your FEMAP session, it is
not. It is merely a code
editing tool.

roplistBor 90,42,90,63 lists(), listd
KEButkon 40,84,90,21
ancelButton 150,84,90,21

g
dlg Az UserDialog

i Messages

=
X

Snap To Poink. ..

Group Automatic Add
End Program File
Open Model

Yiew Autoscale Yisible
Muicl Ankbianc

[(_l Ll]

Ld: 0 Con: 0 Grp: 0 out: 4

>

[][

&

Prop: O

What is object oriented programming?

Traditional programming is usually seen as being a set of functions, or
simply as a list of instructions.

Object Oriented Programming (or OOP) can be seen as a group of
Objects that cooperate with each other. Each of the objects have their
own distinct set of capabilities.

OOP programming is quite complex and includes topics such as
inheritance, encapsulation, among others. These more complex ideas are
not immediately necessary, and will not be discussed. In fact, the FEMAP
API has made it pretty much unnecessary to ever have to learn these
concepts.

Organization

It is helpful to think of each of the entities as being separate.

* YourVisual Basic code acts like a traditional code, i.e.
as a set of instructions.

o mm—r———— The VB code makes requests of the API, which then

"&PT witten by Jared Ellefzon
“Jared Ellefson@PredictiveEngineeting.com

acts upon those requests either by retrieving from

and putting things into the FEMAP database.

Dim fernap As Fermap.model
Sat famap = GetObjesi(,"femap model’)

Dirm entitySet Az Object

e * FEMAP is a database, which only holds and displays

Dim entity Type As Long
Dim rmessaqeSting As String

Dim lists$(3) d
g ata
Jists$(1) = "Curves" °
lists$(2) = "Surfaces”
lists$13) = "Solids" o
lists$() = "Nades"

lists$15) "Elernents”

Biegin Dizlog UserDislog 230,133, Entity Information” ' S6GRID:10,7,1,1
text 50,7, 160,35, " What type of entity would you like to reorient?'
DroplistBor 0,42,30,63 fists(), Jist1
OkEButton 40,§4,90,21 _>
Cancelurtton 150,84,90,21
End Cialog <

Gim dig As Userlialog

IF Dislogfdlg) = 0 Then
GoTe FAIL
End TF
IF diglistt = 3 Then
dig.liet =36
End IF

entity Type = diglistl + 3 A P I

IF diglistt = 36 Then
dig.listl = 3
End IF

o v 31 eing to requst of the user the T0/s of the entites @ meve
essageSting = "Enter the * + listsgidhg std) +* you would ke o recrient”

Dim setCount fs Long
Dim setID Az Long M

&) . [3]

Visual Basic Code

The FEMAP API Objects

The objects found in the FEMAP API fall into two categories:
The FEMAP Application Object
* Stand Alone Objects

Generally speaking, these objects act have the following properties:

The FEMAP Application Object has all the properties needed to
create things. It is the object that will be used to create
geometry, measure things, mesh geometry, delete entities, etc.

* The Stand Alone Objects are used to manipulate existing
entities.

Object syntax

rc = object.capability(requirements, output)

The syntax in the above statement is standard. The object is what is being
“asked” to act.The capability is what the object is being asked to do.The
requirements are what the object needs in order to execute the capability.
The output is what the object will “produce,’ although often times
capabilities will have no output.

The term rc is the return code and will generate a specific value
depending on a number of object success states. The rc status is explained
in more detail in a subsequent slide.The reality is that it is an extra - sort
of a bonus feature to help in debugging or controlling sequence execution.

Objects that produce an output

How this all works is best explained by a more
concrete example.Think of an object as a
person, a person who will do things that you
ask.Will call this person “Mike”. Say we want
“Mike” to go to the store and buy an apple. In
order for “Mike” to do this, we need to to
provide him with a car and money. For this
capability, “Mike” will produce an output:an
apple. The statement would look like this:

OBJECT CAPABILIT REQUIREMENT OUTPUT
\ Y \ /S_/\ /

rc = Mike.GetApple(Money, Car,Apple)

Objects that produce NO output

Now suppose we want “Mike” to wash the
dishes in the kitchen.We need to provide
him with the dishes, soap, a sponge, and a
sink. After he is done he will produce NO
output for us because we haven’t asked him
to bring us anything. All we have done is ask
him to go off and do something.The
statement looks much like the previous one.

OBJECT CAPABILITY REQUIREMENTS NO OUTPUT

rc = Mike.DoDishes(Dishes, Sponge, Soap, Sink)

Sometimes we ask objects to organize things. Sometimes we will ask them

to create or move things.The only time objects will have output is if we

ask them to bring us something specific. This most likely seems fairly

abstract, but once you see how it actually works you will see that it is very
intuitive. 10

Assign proplID 10 to Element ID 100

tHdEG- AL EEEEN a0

—
.._‘J

1 Sub Main
2|/ : Dim App as femap.model
3| . SetApp = feFemap()
4
5/ Dim EIm As Elem
6/ . SetElm = App.feElem
7|
8/| | Dim rc As Variant
|
10| rc = Elm.Get(100)
1|
12| Elm.propID = 10
13|
14/ rc = Elm.Put(100)
15)|
16

- End Sub

Element properties

Property Description

INT4 color

The element color.

INT4 layer

The layer associated with the element.

INT4 type

Type of element:

Rod=1, Bar=2, Tube=3, Link=4, Beam=(Lin=5 Para=37),
Spring=6., DOFSpring=7, CurvedBeam=8, Gap=9. Plo-
tOnly=10, ShearPanel (Lin=11 Para=12), Membrane (Lin=13
Para=14), BendingOnly (Lin=15 Para=16), Plate (Lin=17
Para=18), PlaneStrain (Lin=19 Para=20), Laminate (Lin=21
Para=22), Axisymmetric (Lin=23 Para=24), Solid (Lin=25
Para=26), Mass=27. MassMatrix=28, Rigid=29. StiffnessMa-
trix=30, CurvedTube=31. PlotOnlyPlate=32, SlideLine=33.
Contact=34, Axisymmetric Shell (Lin=35 Para=36), Weld=38

INT4 proplD

ID of property referenced by the element.This is not required
for certain property types. like plot-only and rigid elements.
These elements have no properties or materials.

INT4 topology

The shape of the element:

0=Line, 2=Tri3, 3=Tri6, 4=Quad4, 5=Quad8, 6=Tetra4,
7=Wedge6, 8=Brick8. 9=Point, 10=Tetral0, 11=Wedgel 5.
12=Brick20, 13=Rigid, 15=MultiList. 16=Contact, 17=Weld

Anatomy of a simple API

Sub Main

Dim femap As femap.model
Set femap = GetObject(,"'femap.model™)

Dim entitySet As Object
Set entitySet = femap.feSet

Dim vecMove(2) As Double
vecMove(0) = 10
vecMove(1) =0
vecMove(2) =0

Dim entityType as long
entityType =7

Dim messageString as String
messageString = “Please Select the Nodes You Would Like To
Move”

rc = entitySet.Select(entity Type, True,messageString)

Dim setID As Long
setID = entitySet.ID

Dim vecLength As Double
rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBy(entity Type, setID, False, vecLength,
vecMove)

End Sub

Now we’ll walk through a simple API.
All this APl does is move a set of
selected nodes 10 units in the x
direction.Yes, there is a function that
will do this directly without an API,
but we are starting simple.The entire
script is shown on the left. We will
walk through each step in this API.

Defining an object

Sub Main

Dim femap As femap.model
Set femap = GetObject(,""femap.model’”)

Dim entitySe? As Object
Set entitySet = femap.feSet

Dim vecMove(2) As Double
vecMove(0) = 10.0
vecMove(1) =0
vecMove(2) =0

4

Dim entityType as long
entityType =7

Dim messageString as String

messageString = “Please Select the Nodes You Would Like
To Move”

rc = entitySet.Select(entity Type, True,messageString)

Dim setlD As Long
setID = entitySet.ID

Dim vecLength As Double
rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBy(entity Type, setID, False, vecLength,
vecMove)

End Sub

Sub Main at the top of the script signifies
that what follows is the main program.

Next we create an object called femap.
We then set this object equal to the
current femap session. Essentially what this
does is create the FEMAP Application Object
and appropriately calls it femap. So the
object femap now has all the properties of
the FEMAP Application Object.

What we want to do will also require the
help of another object, called the Set
object. entitySet now has all the
properties inherent in the Set object.

Dimensioning variables

Sub Main

Dim femap As femap.model
Set femap = GetObject(,"femap.model™)

Dim entitySet As Object
Set entitySet = femap.feSet

Dim vecMove(3) As Double
vecMove(0) = 10.0
vecMove(1) =0 }
vecMove(2) =0

Dim entity Type as long <
entityType =7

Dim messageString as String
messageString = “Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entity Type, True,messageString)

Dim setlD As Long
setlD = entitySet.ID

Dim vecLength As Double
rc = femap.feVectorLength(vecMove,vecLength)
rc = femap.feMoveBy(entity Type, setlD, False, vecLength, vecMove)

End Sub

Next we declare a 3 dimensional array,
composed of 8-byte real numbers called
vecMove. This array will represent the vector
along which the translation will take place.
We then specify each value in the array.

We also declare a variable called entity Type
as a 4-byte integer and assign it a value.

Using the capabilities of an object

Sub Main

Dim femap As femap.model
Set femap = GetObject(,"femap.model™)

Dim entitySet As Object
Set entitySet = femap.feSet

Dim vecMove(2) As Double
vecMove(0) = 10.0
vecMove(1) =0
vecMove(2) =0

Dim entityType as long
entityType =7
Next, we will declare a string, and give

Dim messageString as String it |
messageString = “Please Select the Nodes You Would Like To a value.
Move”
rc = entitySet.Select(entity Type, True,messageString) Now what we want to do is collect
_ from the user, what nodes they would
Dim setID As Long like moved.

setlD = entitySet.ID
The Set object has a handy capability

Dim vecLength As Double .
that allows us to do this called select.

rc = femap.feVectorLength(vecMove,vecLength)
rc = femap.feMoveBy(entity Type, setlD, False, vecLength, vecMove)

End Sub

What the OBJECT needs in order

Sub Main CAPABILITY / execute the CAPABILITY.

Dim femap As femap.model OBJECT /—/R
Set femap = GetObject(,"femapW \

Dim entitySet As Object rc =

Set entitySet = femap.feSet entityS et.Select (e

Dim vecMove(3) As Double g)
vecMove(0) = 10
vecMove(1) =0
vecMove(2) =0

ity Type, True,messageStrin

Dim entity Type as long

entity Type = 7 The syntax of the entitySet.Select object

capability follows the standard syntax. For
this object there is no output, only
requirements. This is because we are not

A

Dim messageString as String
messageString = “Please Select the Nodes You Would Like To

Move”

“asking” the object for anything concrete
rc = entitySet.Select(entity Type, True,messageString) (||ke a va|ue)’ we are asking the the object
Dim setlD As Long to pIac.e cer.taln ent|t|e§ into a §§t.The
setID = entitySet.ID effect is having our desired entities added

to the entitySet. (Later, we will use an

object that will produce an actual output, a
rc = femap.feVectorLength(vecMove,vecLength) required distance.)

Dim vecLength As Double

rc = femap.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

Entity types

Each entity in the FEMAP API
is identified by a name and an
number. The entity can be
referred to by either. In the
preceding piece of code
where | refer to the node
entity as the number 7, |
could also have referred to it
as FT_NODE. Either way the
API will know to which entity
type you are referring.

|Entity Type |Numeri:: Value HEntity Type |Numeril:: Value
FT_POINT E [[FT_ouT_case |28
FT_CURVE 4 HFT_OUT_DIR |24
FT_SURFACE E HFT_DUT_DATA El
FT_VOLUME E HFT_REF'DHT ER
FT_NODE |7 [[FT_BouNDARY |32
FT_ELEM E HFT_I_AYER EE
FT_C5vs E HFT_MATI__TABLE |34
FT_MATL |10 HFT_FUNCTIDN_DIR |35
FT_PROP 11 [[FT_FUNCTION_TABLE 38
FT_LOAD_DIR |12 [FT_SOLD EE
FT_SURF_LOAD |13 [FT_COLOR 40
FT_GEOM_LOAD |14 HFT_DUT_CSYS 41
FT_NTHERM_LOAD |15 [[FT_conTacT |58
FT_ETHERM_LOAD (16 HFT_GRTYF'E |59
FT_BC_DIR 17 HFT_AMGR_DIR E
FT_BCO |18 HFT_TMG_BCO 112
FT_BCO_GECM |14 HFT_TMG_CONTROI_ 113
FT_BEC |20 [[FT_TmG_INTEGER [[114
FT_TEXT |21 HFT_TM G REAL 115
FT_VIEW |22 HFT_TMG_DF'TIDN 118
[FT_GROUP [24 [l |
[FT_var [27 [l |

Data types

Visual Basic requires the programmer to declare all variables before they are
used as well as what type of data they will be.The six data types are shown

below.WinWrap corresponds to the Visual Basic 6 data types.

API Definition in the Manual

Description

From Basic

From C++

Visual Basic 6 |Visual Basic .NET

[BCOL |Single byte, True/False value [Boolean [Boolean |Unsigned Char
|INT2 |2-t:|§,r'te integer |Ir'|teger |Integer |sh|:|rt

|INT4 |4-b§,zte integer |L|:|ng |Integer |I|:|ng, int
[REAL4 |4-byte real |Single |Single [float

[REALS |8-byte real [Dauble [Dauble |double
|STHING ||:hara|:ter string, null terminated |String |String ||:har[..]

APL.pdf

Select

(entityTYPE, clear, title)

Description:

This function displays a standard selection dialog box to allow a user to choose entities of a specific type
and create a selection set.

Input:

Type of entity to select. For more information, see Section 3.3.5,

INT4 entity TYPE "Entity Types". rc =

If True. the set is cleared prior to selection. and only the selected entitySet_Select(entityType,
entities will be in the set. If False. previously selected entities will be i

displayed in the dialog box for editing. or for combining with new True,m essageStrl i g)
selections.

BOOL clear

A text string that will be added to the title bar of the dialog box to

char *title . - . S
give the user more information about what is being selected.

Output:

None

Return Code:

FE CANCEL The user cancelled the selection.

No entities of the selected type exist. None were selected and the dia-
FE NOT _EXIST log box was not displayed. If clear=True, the selection set will be
empty.

Remarks/Usage:

After the dialog box is closed, the set contains the list of all [Ds that were selected. If clear=False, then
some of the entities could have been selected prior to the dialog being displayed. If the user hits “Can-
cel” to close the dialog. then the set contains whatever it contained before, unless clear=True, in which
case it contains nothing.

20

What the OBJECT needs to use
OBJECT CAPABILITY the CAPABILITY.

rc = entitySet.Select(entity Type, True,messageString)

Entity Selection - Please Select the Nodes You Would Like To Move <

g
% &

(#14dd () Bemave () Exclude Fleset Pick ~ | b
L[: I:IE tl:'| | I:""'|-I | Presvious Delete
Ejfellle [M ore] [bethod ™] [Cancel]

A Set object is used to store a set of entities, i.e. a list of nodes.The select capability displays
the above shown dialogue box so the user can select which nodes they are interested in. After
the user selects these nodes, they are added to the set called entitySet.
In order to do this, the Set object needs:
* it needs to know what type of entity to ask for: entity Type, which has already been set to 7;
this number corresponds to the node entity,
* the True statement tells the object to clear the set of any old entities that may be in it,

* and a message to give the user: messageString

21

Return codes

Often statements like the following are found in
API’s:

rc = object.capability(requirements,output)

The rc stands for return code. After the
object executes it’s capability, it returns a code
that corresponds to it’s success in executing the
capability. If the object is successful,a -1 is
returned. If it is not successful, something else will
be returned depending upon what went wrong. All
the return codes are found in the table on the
right.

FEMAP Return Codes

}FE_CM [[[FE_noT_AvalLaBLE
FE_FAL o [[FE_TOC_SmaLL
[FE_CANCEL 2 [[FE_BAD_TYPE
[FE_INVALID 5 [[FE_BAD_DATA
FE_NOT_EXIST [[[FE_NO_mEMORY
[FE_SECURITY |5 | [FE_NO_FILENAME

BN NN

22

Return OBJECT CAPABILITY REQUIREMENTS OUTPUT

code \ \ \ (_/\ /

rc = app.feMeasureDistance(ptl, p2, dist)

feMeasureDistance
(p1, p2, dist)

Description:

This function measures the distance between two coordinates.

Input:

REALS pl]0..2] The first coordinate location.

REALS p2[0..2] The second coordinate location.

Output:

REALS *dist The distance between the coordinate locations.

23

One more type of object syntax

Sub Main

Dim femap As femap.model

Set femap = GetObject(,"femap.model") . . e . . .
Certain object capabilities require no input

Dim entitySet As Object

Set entitySet = femap feSet and do not provide output in the

Dim vecMove(3) As Double convectlonal way.

vecMove(0) = 10 . . .
veeMove(l) = 0 Such is the case with the object.ID
vecMove(2) =0 statement.

Dim entityType as long
entityType =7

Dim messageString as String Instead this syntax returns the desired value

messageString = “Please Select the Nodes You Would Like To Move” to the variable on the Ieft hand side Of the

rc = entitySet.Select(entity Type, True, messageString) equa| sign. In this case setlD will take on the
Dim setID As Long ID number of the object entitySet. A single
setlD = entitySet.ID 47 program can have multiple set objects

Dim vecLength As Double defined, each containing their own data. Each
rc = femap.feVectorLength(vecMove,vecLength) of these sets would have a specific ID to

rc = femap.feMoveBY(entityType, setID, False, vecLength, vecMove) dlffe rentiate them-

End Sub

24

Retrieving the length of the move vector

Sub Main

Dim femap As femap.model <
Set femap = GetObject(," femap.model"")

Dim entitySet As Object

We will now use a capability of the FEMAP
Application Object to find the magnitude of the
nodal move we will be requesting.

Set entitySet = femap.feSet
Dim vecMove(3) As Double
vecMove(0) = 10
vecMove(1) =0
vecMove(2) =0

Dim entityType as long
entityType =7

Dim messageString as String
messageString = “Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entity Type, True,messageString)

Dim setID As Long
setID = entitySet.ID

Dim vecLength As Double
rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBYy(entityType, setID, False, vecLength, vecMove)

End Sub

rc = femap.feVectorLength(vecMove,vecLength)

CAPABILITY INPUT OUTPUT

What we are asking of the FEMAP
Application Object is for it to take our
vector, called vecMove, and tell us how long it
is.What the object gives us, is a new value for
vecLength. If the operation is successful, rc
will be given the value of -I.

25

Moving the nodes

Sub Main

Dim femap As femap.model
Set femap = GetObject(,"femap.model”) And last, but certainly not least, we will
Dim entitySet As Object request that the FEMAP Application

Set entitySet = femap.feSet Y
Object moves our nodes.
Dim vecMove(3) As Double

vecMove(0) = 10 This capability, called feMoveByY, has the
M 1)=0 . .

XEEMEXEEZLO following requirements:

Dim entityType as long * what type of entity it is moving,

entityType =7 . , L
* what set contains the ID’s of the entities

to move,

Dim messageString as String
messageString = “Please Select the Nodes You Would Like To Move”

* whether or not this is a radial
translation,

 the length of the translation,

rc = entitySet.Select(entityType, True,messageString)

Dim setID As Long
setID = entitySet.ID

Dim vecLength As Double . . .
* and a vector specifying the direction of

/ the translation.

rc = femap.feMoveBy(entity Type, setlD, False, vecLength, vecMove)

rc = femap.feVectorLength(vecMove,vecLe

End Sub

26

In conclusion

What is most interesting about the script we just explored, is that it only does one thing: it
moves the nodes. Everything else found in script exists only to provide the last command
with the information it needs to make the move.This is fairly common. Often much of the
API script is devoted to retrieving things from the database, interpreting them, changing
them, and then finally inserting them back in.

In our case, we retrieved the node numbers of that were to be moved, organized them
into a set, and then requested that the FEMAP Application Object move them.

The previous example is a simple one that uses very little logic. There are no for or while
loops and no if else statements, but all of the standard logic statements are available and
are used all the time.Anyone with basic programming skills should be able to utilize them
as they would in any other language.

You should now understand the basics needed to read and understand basic API’s. The only
way to become a PRO at writing them is to sit down and do it. In no time you will find that
the structure and capabilities are extremely powerful. You will also find that you will never
again need to scratch your head and say,“l wish the FEMAP programmers would have
included this feature.”

27

