
Introduction to API

Understanding Femap API terminology - with
 a short introduction into the how’s and why’s

1

What’s in this section:

• What is an API?
• What is object orientated programming?
• API organization
• How to define the FEMAP API objects and use them
• Anatomy of a simple API

2

• The FEMAP API is an OLE/COM based programming interface and is
object oriented programming. If you have never programmed in an
object oriented code, it can seem quite different and foreign.

• API means “Application Programming Interface”. It is important to
understand that the API script you write is not part of FEMAP, but
is a stand alone program that is interacting with FEMAP.

• There are a number of codes that can call FEMAP through the API:
Visual Basic, VBA (Excel, Word, Access, ...), C, or C++.

• The most commonly used codes used are Visual Basic, VBA, and
WinWrap.

• WinWrap is a flavor of Visual Basic that is included with FEMAP. In the
FEMAP interface, WinWrap is uncompilable, for this reason many
choose not to use it, but it is a very convenient way to program if your
specific application does not need to be compiled.

• This tutorial will focus exclusively on using WinWrap via the FEMAP
API window.

What is an API?

3

• This is the optional
FEMAP API editing
window.

• Although the window
appears to be part of
your FEMAP session, it is
not. It is merely a code
editing tool.

4

• Traditional programming is usually seen as being a set of functions, or
simply as a list of instructions.

• Object Oriented Programming (or OOP) can be seen as a group of
Objects that cooperate with each other. Each of the objects have their
own distinct set of capabilities.

• OOP programming is quite complex and includes topics such as
inheritance, encapsulation, among others. These more complex ideas are
not immediately necessary, and will not be discussed. In fact, the FEMAP
API has made it pretty much unnecessary to ever have to learn these
concepts.

What is object oriented programming?

5

Organization

FEMAP Visual Basic Code

API

It is helpful to think of each of the entities as being separate.
• Your Visual Basic code acts like a traditional code, i.e.

as a set of instructions.
• The VB code makes requests of the API, which then

acts upon those requests either by retrieving from
and putting things into the FEMAP database.

• FEMAP is a database, which only holds and displays
data.

6

The FEMAP API Objects

The objects found in the FEMAP API fall into two categories:
• The FEMAP Application Object
• Stand Alone Objects

Generally speaking, these objects act have the following properties:

• The FEMAP Application Object has all the properties needed to
create things. It is the object that will be used to create
geometry, measure things, mesh geometry, delete entities, etc.

• The Stand Alone Objects are used to manipulate existing
entities.

7

rc = object.capability(requirements, output)

The syntax in the above statement is standard. The object is what is being
“asked” to act. The capability is what the object is being asked to do. The
requirements are what the object needs in order to execute the capability.
The output is what the object will “produce,” although often times
capabilities will have no output.
The term rc is the return code and will generate a specific value
depending on a number of object success states. The rc status is explained
in more detail in a subsequent slide. The reality is that it is an extra - sort
of a bonus feature to help in debugging or controlling sequence execution.

Object syntax

8

How this all works is best explained by a more
concrete example. Think of an object as a
person, a person who will do things that you
ask. Will call this person “Mike”. Say we want
“Mike” to go to the store and buy an apple. In
order for “Mike” to do this, we need to to
provide him with a car and money. For this
capability, “Mike” will produce an output: an
apple. The statement would look like this:

rc = Mike.GetApple(Money, Car, Apple)

OBJECT CAPABILIT
Y

REQUIREMENT
S

OUTPUT

Objects that produce an output

9

Now suppose we want “Mike” to wash the
dishes in the kitchen. We need to provide
him with the dishes, soap, a sponge, and a
sink. After he is done he will produce NO
output for us because we haven’t asked him
to bring us anything. All we have done is ask
him to go off and do something. The
statement looks much like the previous one.

 Sometimes we ask objects to organize things. Sometimes we will ask them
to create or move things. The only time objects will have output is if we
ask them to bring us something specific. This most likely seems fairly
abstract, but once you see how it actually works you will see that it is very
intuitive.

rc = Mike.DoDishes(Dishes, Sponge, Soap, Sink)

OBJECT CAPABILITY REQUIREMENTS NO OUTPUT

Objects that produce NO output

10

Assign propID 10 to Element ID 100

11

Element properties

12

 Now we’ll walk through a simple API.
All this API does is move a set of
selected nodes 10 units in the x
direction. Yes, there is a function that
will do this directly without an API,
but we are starting simple. The entire
script is shown on the left. We will
walk through each step in this API.

Sub Main

Dim femap As femap.model

Set femap = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = femap.feSet

Dim vecMove(2) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim entityType as long

entityType = 7

Dim messageString as String

messageString = “Please Select the Nodes You Would Like To

Move”

rc = entitySet.Select(entityType,True,messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecLength As Double

rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBy(entityType, setID, False, vecLength,

vecMove)

End Sub

Anatomy of a simple API

13

 What we want to do will also require the
help of another object, called the Set
object. entitySet now has all the
properties inherent in the Set object.

 Next we create an object called femap.
We then set this object equal to the
current femap session. Essentially what this
does is create the FEMAP Application Object
and appropriately calls it femap. So the
object femap now has all the properties of
the FEMAP Application Object.

Sub Main

Dim femap As femap.model

Set femap = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = femap.feSet

Dim vecMove(2) As Double

vecMove(0) = 10.0

vecMove(1) = 0

vecMove(2) = 0

Dim entityType as long

entityType = 7

Dim messageString as String

messageString = “Please Select the Nodes You Would Like

To Move”

rc = entitySet.Select(entityType,True,messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecLength As Double

rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBy(entityType, setID, False, vecLength,

vecMove)

End Sub

Sub Main at the top of the script signifies
that what follows is the main program.

Defining an object

14

Sub Main

Dim femap As femap.model

Set femap = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = femap.feSet

Dim vecMove(3) As Double

vecMove(0) = 10.0

vecMove(1) = 0

vecMove(2) = 0

Dim entityType as long

entityType = 7

Dim messageString as String

messageString = “Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType,True,messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecLength As Double

rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

Dimensioning variables

Next we declare a 3 dimensional array,
composed of 8-byte real numbers called
vecMove. This array will represent the vector
along which the translation will take place.
We then specify each value in the array.

We also declare a variable called entityType
as a 4-byte integer and assign it a value.

15

Sub Main

Dim femap As femap.model

Set femap = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = femap.feSet

Dim vecMove(2) As Double

vecMove(0) = 10.0

vecMove(1) = 0

vecMove(2) = 0

Dim entityType as long

entityType = 7

Dim messageString as String

messageString = “Please Select the Nodes You Would Like To

Move”

rc = entitySet.Select(entityType,True,messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecLength As Double

rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

Next, we will declare a string, and give
it a value.

Now what we want to do is collect
from the user, what nodes they would
like moved.
The Set object has a handy capability
that allows us to do this called select.

Using the capabilities of an object

16

Sub Main

Dim femap As femap.model

Set femap = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = femap.feSet

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim entityType as long

entityType = 7

Dim messageString as String

messageString = “Please Select the Nodes You Would Like To

Move”

rc = entitySet.Select(entityType,True,messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecLength As Double

rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

 The syntax of the entitySet.Select object
capability follows the standard syntax. For
this object there is no output, only
requirements. This is because we are not
“asking” the object for anything concrete
(like a value), we are asking the the object
to place certain entities into a set. The
effect is having our desired entities added
to the entitySet. (Later, we will use an
object that will produce an actual output, a
required distance.)

rc =
entitySet.Select(entityType,True,messageStrin
g)

OBJECT

What the OBJECT needs in order
to execute the CAPABILITY. CAPABILITY

17

Entity types

 Each entity in the FEMAP API
is identified by a name and an
number. The entity can be
referred to by either. In the
preceding piece of code
where I refer to the node
entity as the number 7, I
could also have referred to it
as FT_NODE. Either way the
API will know to which entity
type you are referring.

18

Visual Basic requires the programmer to declare all variables before they are
used as well as what type of data they will be. The six data types are shown
below. WinWrap corresponds to the Visual Basic 6 data types.

Data types

19

rc =

entitySet.Select(entityType,

True,messageString)

API.pdf

20

rc = entitySet.Select(entityType,True,messageString)

OBJECT CAPABILITY

A Set object is used to store a set of entities, i.e. a list of nodes. The select capability displays
the above shown dialogue box so the user can select which nodes they are interested in. After
the user selects these nodes, they are added to the set called entitySet.
In order to do this, the Set object needs:

• it needs to know what type of entity to ask for: entityType, which has already been set to 7;
this number corresponds to the node entity,

• the True statement tells the object to clear the set of any old entities that may be in it,
• and a message to give the user: messageString

What the OBJECT needs to use
the CAPABILITY.

21

Often statements like the following are found in
API’s:

rc = object.capability(requirements,output)

The rc stands for return code. After the
object executes it’s capability, it returns a code
that corresponds to it’s success in executing the
capability. If the object is successful, a -1 is
returned. If it is not successful, something else will
be returned depending upon what went wrong. All
the return codes are found in the table on the
right.

FEMAP Return Codes

Return codes

22

rc = app.feMeasureDistance(pt1, p2, dist)

OBJECT CAPABILITY REQUIREMENTS OUTPUT Return
code

23

Sub Main

Dim femap As femap.model

Set femap = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = femap.feSet

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim entityType as long

entityType = 7

Dim messageString as String

messageString = “Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType,True,messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecLength As Double

rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

Certain object capabilities require no input
and do not provide output in the
convectional way.
Such is the case with the object.ID
statement.

Instead this syntax returns the desired value
to the variable on the left hand side of the
equal sign. In this case setID will take on the
ID number of the object entitySet. A single
program can have multiple set objects
defined, each containing their own data. Each
of these sets would have a specific ID to
differentiate them.

One more type of object syntax

24

Sub Main

Dim femap As femap.model

Set femap = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = femap.feSet

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim entityType as long

entityType = 7

Dim messageString as String

messageString = “Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType,True,messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecLength As Double

rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

 We will now use a capability of the FEMAP
Application Object to find the magnitude of the
nodal move we will be requesting.

 rc = femap.feVectorLength(vecMove,vecLength)

CAPABILITY INPUT OUTPUT

 What we are asking of the FEMAP
Application Object is for it to take our
vector, called vecMove, and tell us how long it
is. What the object gives us, is a new value for
vecLength. If the operation is successful, rc
will be given the value of –1.

Retrieving the length of the move vector

25

And last, but certainly not least, we will
request that the FEMAP Application
Object moves our nodes.
This capability, called feMoveBy, has the
following requirements:

• what type of entity it is moving,
• what set contains the ID’s of the entities

to move,
• whether or not this is a radial

translation,
• the length of the translation,
• and a vector specifying the direction of

the translation.

Sub Main

Dim femap As femap.model

Set femap = GetObject(,"femap.model")

Dim entitySet As Object

Set entitySet = femap.feSet

Dim vecMove(3) As Double

vecMove(0) = 10

vecMove(1) = 0

vecMove(2) = 0

Dim entityType as long

entityType = 7

Dim messageString as String

messageString = “Please Select the Nodes You Would Like To Move”

rc = entitySet.Select(entityType,True,messageString)

Dim setID As Long

setID = entitySet.ID

Dim vecLength As Double

rc = femap.feVectorLength(vecMove,vecLength)

rc = femap.feMoveBy(entityType, setID, False, vecLength, vecMove)

End Sub

Moving the nodes

26

What is most interesting about the script we just explored, is that it only does one thing: it
moves the nodes. Everything else found in script exists only to provide the last command
with the information it needs to make the move. This is fairly common. Often much of the
API script is devoted to retrieving things from the database, interpreting them, changing
them, and then finally inserting them back in.
In our case, we retrieved the node numbers of that were to be moved, organized them
into a set, and then requested that the FEMAP Application Object move them.
The previous example is a simple one that uses very little logic. There are no for or while
loops and no if else statements, but all of the standard logic statements are available and
are used all the time. Anyone with basic programming skills should be able to utilize them
as they would in any other language.
You should now understand the basics needed to read and understand basic API’s. The only
way to become a PRO at writing them is to sit down and do it. In no time you will find that
the structure and capabilities are extremely powerful. You will also find that you will never
again need to scratch your head and say, “I wish the FEMAP programmers would have
included this feature.”

In conclusion

27

