

NX CAE - NX Nastran Tips & Tricks

Restricted © Siemens AG 2014 Smarter decisions, better products.

Agenda

- Reuse
- Assembly Fem
- Connection examples
- Debugging some related issues

NX CAE

Elements of a Modern Open CAE Environment

SIEMENS

Integrated Modeling and Solutions

Delivers easy-to-use geometry editing and advanced FE capabilities for a range of physics solutions within a single,

System Level Modeling and Simulation

Enables systems-level simulation with capabilities for building and managing FE assemblies, correlating system behavior with

Multi-Discipline Simulation and Optimization

Streamlines workflows for both individual analysts and CAE workgroups by coupling best-in-class solvers and solutions for multi-discipline and multi-physics simulation and optimization Simulation Data and Process Management

Enables CAE data, knowledge, and processes to be captured, shared, and re-used by more people within the organization

NX CAE: Basic File Structure – Single FEM

Benefits

- Working in a concurrent environment
- Efficient use of model and data reuse
- Efficient use of local memory not all files need to be loaded

Reuse Fem/Sim + templates

NX Advanced Simulation: Basic File Structure – Assembly FEM

Benefits
Working in a concurrent environment
Efficient use of model and data re-use
Efficient use of local memory – not all
files need to be loaded

Siemens PLM Connection

NX Advanced Simulation: Basic File Structure – Assembly FEM

- Assembly FEM can reuse the CAD assembly locations defined by the designer.
- Assembly FEM support single and multi level structures
- Distribute work among members of a team
- Improve the documentation and management of component meshes using assembly FEMs.
- Use and reuse existing component FEMs.
- Replace individual component FEMs with alternate mesh or geometry representations.
- Support workflow for external super elements.
- Less methods to make assyfem level connection between component compared to 'single fem above assembly' workflow
 - Operators that change component mesh like Mesh Mating, Stitch Edge,... not possible.

Connecting Component FEMs

If the FEMs brought into the AFEM have coincident nodes, the nodes can be merged at the assembly FEM level without modifying the individual FEMs.

- The user may select the nodes or meshes to be checked or the software investigates the displayed model
- It is recommended that the user verify the duplicate nodes before merging them.

Connecting Component FEMs

In the assembly FEM file, you can define connection elements to join component FEMs into a system using the following tools:

- Use the 1 D Connection command to define 1 D connection meshes, spider elements, or connecting structures such as pins, bolts, or struts.
- Use Bolt connection method
- CFAST CWELD connections
- Use manual node and element operations to create individual elements, including lumped mass, shells, or solid elements.
- Automation using NX.Open to support manual methods connection methods

Connecting Component FEMs

In the Simulation file, you can use the Boundary conditions like:

- Surface-to-Surface Contact
- Surface-to-Surface Gluing
- Edge to Surface Gluing
- Edge to Edge Gluing
- Edge to Edge Contact (axisymmetric, plane stress and plane strain elements)
- MPC

Creating Assembly FEMs – Reuse LBC

NX CAE: An extensive set of connection tools

The decision on which tool to use depends on the model requirements and the project needs.

Connection techniques for NX Nastran

- 1D Connections
 - Node-to-Node
 - Element Edge to Element Edge
 - Point-to-Point
 - Point-to-Edge
 - Point-to-Face
 - Edge-to-Edge
 - Edge-to-Face
- Mesh 3D Sweep Between
- Node Merge
- Mesh Mating
 - Glue Non-coincident (MPC's)
 - Glue Coincident
 - Free Coincident
- Edge Contact
- Surface Contact
- Simulation Regions
- Contact
 - Surface-to-Surface Contact
 - Linear Contact
 - Non-Linear Contact
- Glue
 - Surface-to-Surface Glue
 - Edge-to-Surface Glue
 - Edge-to-Edge Glue

- Bolt
 - Bolt with Nut
 - Bolt in Tapped Hole
 - Bolt with Spider at Junction
- Constraints
 - Coupling
- Weld Techniques
 - CFAST/CWELD
 - LOHR technique

Connection techniques in NX Thermal, Flow, ESC & Space Thermal

- 1D Connections
 - Node-to-Node
 - Point-to-Point
 - Point-to-Edge
 - Point-to-Face
 - Edge-to-Edge
 - Duct for thermal/flow transfer
- Surface-to-Surface Contact
- Surface-to-Surface Glue
- Thermal Coupling
- Articulation Joints for transient radiative heat exchange
- Recirculation Loop
- Interference Resistance
- Peltier Cooler
- Radiation Enclosure & Heating
- Convection and Radiation to Environment

RBE2 - Rigid Elements

Considerations:

- All forces will be transferred
- No localized behavior considered
- Maintains shape of hole

Concerns:

- Consider DOF of connected elements
- May add numeric stiffness
- If the nodes are not coincident, the resulting moment will be included
- Depended nodes: No constraints or other depended nodes connected

One rigid element connecting all the nodes to one central node

One rigid element connecting a node at the center of the hole

RBE3 – Constraint Relation Elements

Considerations:

- All forces will be transferred
- No localized behavior considered
- Allows ovalization of hole

One constraint element connecting all the nodes to one central node

Concerns:

- Consider DOF of connected elements
- If the nodes are not coincident, the resulting moment will be included
- Depended node: No constraints or other depended nodes connected

Two constraint elements connected with one rigid bar or beam element

(1) dependent node (2) independent nodes

RBE2 example: DOF 3D Elements

RBE2 example: Depended Node

RBE2 example: Bolt connection

Questions

Restricted © Siemens AG 2014

Page 17 2014-05-14 Siemens PLM Connection

Christophe Vandevelde

Restricted © Siemens AG 2014 Smarter decisions, better products.