Femap Tips and Tricks: Temperature Loading Import from Excel

Sometimes element or nodal temperature distributions that are created by thermal solvers are only available in the form of a spreadsheet. We would like to take these values and turn them into a load case for subsequent analysis, so let's see how to do this in Femap.

The demonstration model for this is a very simple strip of ten quad elements, and we also have a temperature distribution in the form of a spreadsheet, which has actually been saved in a comma delimited format.

Paste Clipboar	K Calibr ≩ ▼ Ø IS .	i • 11 • 7 ∐ • ⊞ • ૐ Font	A [*] A [*] ≡ * <u>A</u> * ≡	E Z Z	≫r ≣ ≇≇ ⊡ar	General ▼ \$ * % * *.00 *00 Number	Condition Format as Cell Styles	nal Formatting * : Table * s * tyles	G ■ Insert ▼ M Delete ▼ Format ▼ Cells	Σ * A Σ * Z Sort & Z * Filter * Editing	Find & Select *
	A1	▼ (* fx	Element	ID							
4	A	В	С	D	E	F G	Н	I	J K	(L	M
Eler	ment ID	emperature (deg C)									
	1	220									
3	2	220			V1						7
1	3	220									
5	4	220									
5	5	220									
7	6	220				~					
3	7	230			-						
Э	8	245				$\langle \rangle$					
LO	9	265				\sim					
11	10	290					$\langle \rangle$				
.2	11	335									
.2 .3	11 12	335					~	\sim			
.2 .3 .4	11 12 13	335 335 290						\checkmark			-
12 13 14	11 12 13 14	335 335 290 265									
12 13 14 15	11 12 13 14 15	335 335 290 265 245									
12 13 14 15 16 17	11 12 13 14 15 16	335 335 290 265 245 230									
12 13 14 15 16 17 18	11 12 13 14 15 16 17	335 335 290 265 245 230 220									
12 13 14 15 16 17 18 19	11 12 13 14 15 16 17 18	335 335 290 265 245 230 220 220									
12 13 14 15 15 16 17 18 19 20	11 12 13 14 15 16 17 18 19	335 335 290 265 245 230 220 220 220			i k						
12 13 14 15 16 17 18 19 20 21	11 12 13 14 15 16 17 18 19 20	335 335 290 265 245 230 220 220 220 220 220			k						
12 13 14 15 15 16 17 18 20 20 21 22	11 12 13 14 15 16 17 18 19 20 21	335 335 290 265 245 220 220 220 220 220 220 220			چر ب						

These temperatures can be imported into Femap in the form of a results vector.

In the menu select **File / Import / Analysis Results...** and in the resulting *Import Results From* dialog, select **Comma-Separated**.

Import Results From	—
Analysis Format	
Туре	▼
© NASTRAN	ABAQUS
NX Nastran 👻	C ANSYS
Femap Neutral	C LS-DYNA
Omma-Separated	© MARC
Femap Structural	SINDA/G
Femap Optimization	PATRAN
I-DEAS	CAEFEM
ОК	Cancel

Click **OK** and browse to select the spreadsheet csv file that contains the temperature distribution data.

In the Read Comma-Separated Table dialog ensure that the format settings match the spreadsheet layout. For this example we are reading in nodal data, and we'll create a new output set with an ID of 9000000. Click **OK**.

Read Comma-Separa		×		
Format	Output Type			
📝 First Row Contai	Nodal			
First Column Cor	V First Column Contains IDs			
Set and Vector Optio				
Create New Set				
Add to Active Set				
First Vector ID	9000000	ОК		
Vectors are XYZ	Cancel			

We can check the temperature values by plotting them out as if they were results vector values.

Click the **Post Data** icon on the *Post* toolbar then select the vector **9000000. Temperature (deg C)** in the *Output Set Contour* box.

Select PostPro	cessing Data				— ×-
View 1	Untitled				
Data Selectio	n	Section Cut Options			
Category	0Any Output 👻	Out Model	Parallel S	ections	Section
Туре	Type 0Value or Magnitude 👻		Multiple Sections		
	Data at Corners				
Output Set		Program	Analysi	s Type	Set Value
1Table Out	put 🔻	Comma-Separat Table	ed Unkr	iown	0.
Output Vecto	rs				
Deformation	Transformation	Туре		ID	Value
		М	aximum		
Contour	Transformation	M	INIMUM		
9000000Te	emperature (deg C)	Node M	aximum	11	335.
		м	inimum	1	220.
Final Output	Set	Contour	Options	Trac	ce Locations
	*	Contour	Vectors	Strea	mline Options
Output Set I	ncrement 1	Laminate	Options	OF	Cancel
		Freebody	Display	UK	Cancer

The next step is to convert this results vector into a load case.

In the menu, select Model / Load / From Output... and enter a title in the following dialog, and click OK.

As this is nodal temperature data, in the *Select Type of Load* dialog, select **Temperatures** in the *Nodal Loads* column and click **OK**.

Select Type of Load		×		
Defined On				
Node/Elem Opin	t 🔘 Curve 🔘 Surfa	ce 🛛 🕅 Select All		
Nodal Loads	Elemental Loads	Fluid Loads		
Forces/Moments	Distributed Load	Pressure		
Displacements	Pressures	Tracking Quantity		
Velocities				
Accelerations				
Temperatures	Temperatures	🔘 Fan Curve		
Heat Generation	Heat Generation			
Heat Flux	Heat Flux			
	Convection	ОК		
	Radiation			
		Cancel		

In the subsequent *Create Loads From Output* dialog, pick up the temperature vector in the **X Vector** box, and click **OK**.

Create Loads	s From Output		X
Load Set 1	Temperature Distrubution		
Color 10	Palette Layer 1	Output Set	1Table Output 👻
X Vector	00000Temperature (deg C) 👻	RX Vector	.
Y Vector		RY Vector	▼
Z Vector		RZ Vector	-
Face ID			OK Cancel

The temperature load definition has now been created.

You can watch the video of this Femap tip on <u>YouTube</u>.