Femap Tip and Tricks: Equation Based Loading

To demonstrate the creation of equation based loading we'll use a water tank quarter model. Prior to load application a local coordinate system positioned at the expected water level has already been defined and the wall surfaces have been split at the corresponding level to allow a group of wetted surfaces to be created.

The hydrostatic pressure (P) is a function of the fluid density (ρ), acceleration due to gravity (g), and fluid depth (h).

$$P = \rho g h$$

For water, and using the mm/tonnes/s consistent set of units in this model, this simplifies to:

$$P = 9.79e^{-6} ! z$$

Note that "!z" is the Femap variable that represents the depth of water in the equation.

Create a new load definition by opening the **Model** section in the *Model Info* tree and right clicking **Loads**. Select **New** and enter a **Title** in the *New Load Set* dialog, then click **OK**.

Expand the **Loads** section of the *Model Info* tree and right click **Load Definitions** and select **On Surface**. You should now select the surfaces that represent the wetted area of the model in the *Entity Selection* dialog. In the *Create Loads on Surfaces* dialog, select **Pressure** as the load type. In the *Load* section of the form, enter **1.** as the *Pressure*. In the *Coord Sys* box, select the local coordinate system that is positioned at the water level (this needs to have been defined previously). In the *Method* section of the form, select **Variable**, then click the **Advanced** button.

Create Loads on Surfaces			X
Load Set 1 Hydrostati	c Load		
Title		Coord Sy	ys 101Fluid Level 🗸
Color 10 Palette	Layer 1		
Force Force Per Area Force Per Node Bearing Force Moment Moment Per Area Moment Per Node Torque Displacement Enforced Rotation Velocity Rotational Velocity Acceleration Rotational Acceleration Pressure	Direction Normal to Element Face Vector Along Curve Normal to Plane Normal to Surface Load Value Pressure 1.	Specify Time/Freq Dependence 0None	Method Constant Variable Data Surface Data Surface Data Surface
Temperature Element Temperature Heat Flux Heat Flux Per Area Heat Flux Per Node Heat Generation	Phase 0.		
	At Corners		OK Cancel

In the *Advanced Load Methods* dialog select **Equation** and enter the equation **9.79e-6*!z** in the *Equation* box. Click **OK** and **OK** again.

Advanced Loa	ad Methods			×
Multiply By	Equation	Function	Interpolation	n ID Variable
Multiplier Da	ta			
Equation	9.79e-6*!z			
Function	0None		T	
Interpolation	i Corner Loca	ation (XYZ)	Valu	ie
Locate 1	0.	0. 0.	0.	ОК
Locate 2	0.	0. 0.	0.	Cancel

The surface load markers are now visible, but to see the actual element loads that have been created select **Model | Load | Expand** in the menu.

In the *Expand Geometry Loads* dialog, click the **Convert to Node/Elem** checkbox and click **OK**, then **Yes** in the confirmation dialog. The elemental loads are then displayed.

Watch the video of this Femap tip on <u>YouTube</u>.